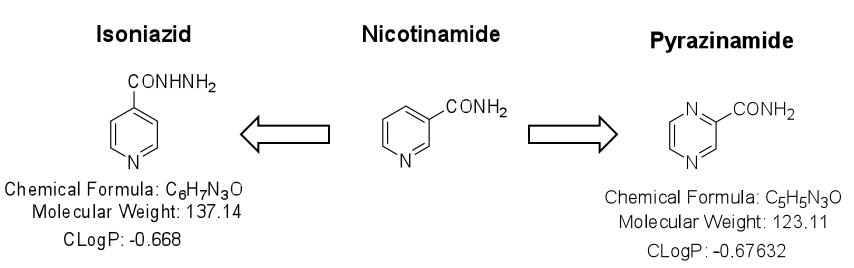
....from a therapeutic perspective:

How to better use PZA?

- Role in new drug regimens?
- Address weight banding issue
- Whether PZA-R translates into therapeutic outcome?
- Develop rapid diagnostics for PZA-R

How to make a better PZA?



Discovery of a New Generation of Pyrazinamide

Working Group on New TB drugs: "Essentiality of Pyrazinamide" Workshop Bethesda June 1, 2011

Background

- Discovered in 1952 by testing limited nicotinamide analogs in mouse (Dessau, et al., Am. Rev. Tuberc., 1952, 65, 635)
- Pro-drug requires activation by pyrazinamidase (PncA) to pyrazinoic acid
- Narrow spectrum mycobacteria only
- Low, pH dependent activity MIC \geq 16 µg/ml (at pH 5.5)
- Potent *in vivo* efficacy against chronic but not acute infection in mice
- Dose-limiting toxicities hepatotoxicity and arthralgia

Therapeutic Role of PZA – Current TB Treatment

Drug-sensitive TB

- Key component for 1st line therapy; responsible for shortening therapy from 9 to 6 months
- Unclear role in continuation phase

Drug-resistant TB

- Part of MDR therapy, although ~ 50% MDR isolates are PZAresistant
- No rapid diagnostics/slow drug susceptibility test

Latent TB Infection

 PZA in combination with RIF can shorten therapy to 2 months, but with unacceptable hepatic toxicity

Therapeutic Role of PZA – Future TB Treatment

Synergistic with virtually all new drugs in development

- Demonstrated in mouse models: moxifloxacin, clofazimine, TMC207, PA-824, PNU100480, etc.
- To be confirmed in human EBA trials: TMC207/PZA and PA-824/PZA
- Unique activity profile suggests niche environment
 - Unconventional potency profile
 - More active under acidic conditions in vitro
 - More efficacious in mouse chronic infection model
 - Further enhances bactericidal and sterilizing activity on top of almost any regimens

Will continue to play an important role in future TB regimens

Major Issues of PZA

Drug Resistance

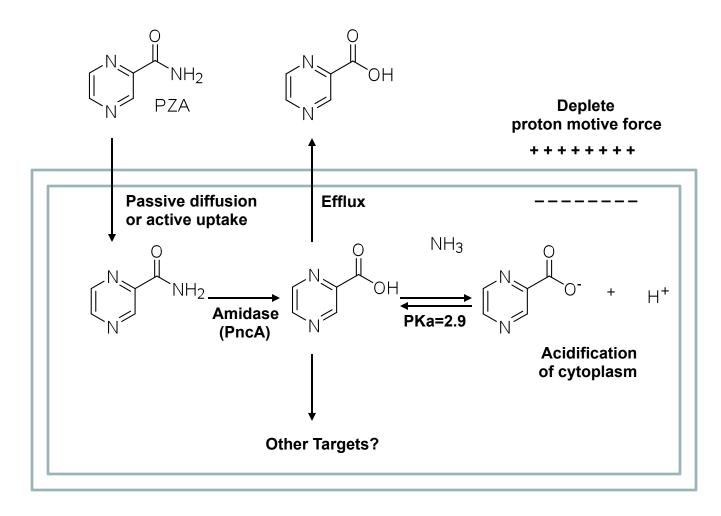
- About 50% MDR clinical isolates are PZA-resistant
- Lack of rapid diagnostics/susceptibility tests

Toxicity Limitation

Hepatic toxicity - narrow therapeutic window

Weight Banding

- Currently 2-4 weight bands used
- Difficulty for compliance and development of FDC



PZA Program: Target Profiles

Profile	Ideal	Acceptable
Target population	Both PZA-S and PZA-R	PZA-S only
Mood of action	Same as PZA, but overcome PZA- R mechanisms	Same as PZA; cross-R with PZA
Efficacy	More potent than PZA, lower dose required	Same as PZA, but wider therapeutic window
Safety/Tolerability	Better than PZA	Same as PZA, but wider therapeutic window
PK/PD	Once daily dosing	Once daily dosing
Dose Regimen	Lower dose than PZA; no weight banding	No weight banding
DDI	No DDI with ARVs	Minor DDI with ARVs, but no dose adjustment needed
COGs	Same as PZA	Multiples of PZA

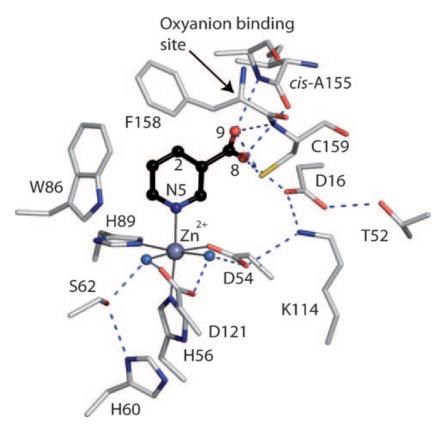
MoA of PZA – A Working Hypothesis

Some key publications:

Boshoff HI, Mizrahi V. J Bacteriol. 2000; 182(19): 5479-85.

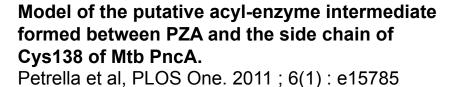
Zhang Y ; Mitchison D, Int. J. Tuberc. Lung. Dis., 2003, 7: 6-21.

Ngo SC, et al., Antimicrob. Agents Chemother., 2007, 51: 2430.

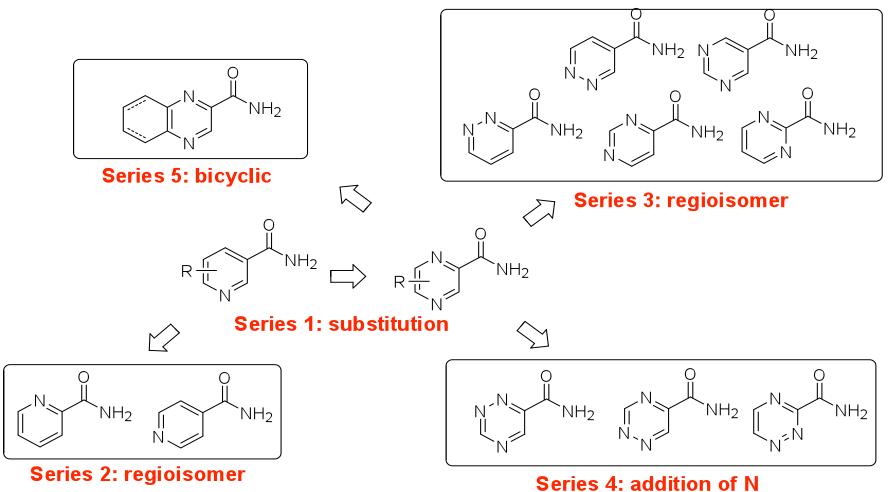

Potential Approaches to Make a Better PZA?

Approach	Associated Tool
 To enhance rate of PncA mediated hydrolysis 	 PncA biochemical assays; kcat/Km determination
 To optimize structure of the acid – minimize efflux 	 Mtb whole-cell assays at pH 5.2 and 6.7
 To overcome PncA mutation and PZA-R 	 PncA knock-out and PZA-R mutant strains

Mouse chronic infection model to assess efficacy



New Tools: Crystal Structure of PncA


H57 H71 W68 H51 UK68 H51 H0H221 F13 A102 H0H202 PZA H137 A134 C138

Specificity and mechanism of *A. baumanii* nicotinamidase: implications for activation of the front-line tuberculosis drug pyrazinamide. Fyfe et al. Angew Chem Int Ed Engl. 2009; 48(48): 9176-9.

Initial Medicinal Chemistry Approaches

Impact PncA activity, efflux and other target binding affinity

Progress to Date

More than 200 compounds made to date leading to three distinct groups of interest:

Group I – both pH and PncA dependent activity (PZA-like)

- 5 compounds
- All are equal or better PncA substrates than PZA (low Km, high kcat)
- pH dependent activity against WT but not active against PncA KO
- **Group II** pH dependent, but PncA independent activity
 - 8 compounds
 - not PncA substrates
 - with pH dependent activity against both WT and PncA KO
 - activated by an alternative amidase?

Group III – both pH and PncA independent activity

8 compounds with MIC < PZA</p>

Acknowledgements

TB Alliance (Project Leaders)

Dr. Anna Upton (Biology) Dr. Takushi Kaneko (Medicinal Chemistry)

BioDuro, China (Chemistry and ADME/PK)

Dr. Tommy Lai Dr. Counde Oyang Dr. Zi-Cheng Wu Dr. JP Shaw Yonsei University, Korea (In vitro and In vivo microbiology)

Prof. Ray Cho Dr. Taegwon Oh Albert Einstein College of Medicine (Biochemistry)

Prof. John Blanchard Dr. Hector Serrano

