Mechanisms of Action and Resistance to Pyrazinamide – a 20-Year Perspective

Ying Zhang, MD, PhD Department of Molecular Microbiology & Immunology Bloomberg School of Public Health Johns Hopkins University Email: yzhang@jhsph.edu

Paradoxes and Fate of PZA:

•PZA (prodrug) is Yin-Yang drug, converting to POA, dynamic •In and Out of Cell •Non-Active and Active: pH, metabolic state Simplest and Complexest •Slow and Fast •Weak (MIC) and Strong **Reverters** •Worst and Best RIF, TMC207, PA-824 • Down and Up: 2^{nd} line $\rightarrow 1^{s}$ •Hate and Love INH, EMB Yáng Persisters

Pyrazinamide, PZA, Z: A Brief History

- Dalmer and Walter synthesized PZA 1936 (1934)
- Chorine: nicotinamide (NAm) 1945
- Kushner, McKenzie: analogs of NAm \rightarrow PZA 1952
- McDermott: unique sterilizing activity 1956
- BMRC: shortening TB therapy (E Africa) 1972
- WHO: HRZE 6 months 1995; Z for MDR-TB 24 months 2010

PZA: A Unique Drug in Treatment of TB and MDR-TB

- PZA in DOTS: 6 month therapy The best TB therapy
 -Initial phase (daily, 2 months) with 4 drugs: INH, RIF, PZA, EMB
- -Continuation phase (4 months) with 2 drugs: INH, RIF
- Most important sterilizing drug, a key role in shortening therapy from 9-12 months to 6 months
- PZA used for MDR-TB treatment for 18-24 months

PZA: Unconventional and Paradoxical

- PZA not active at neutral pH, active at acid pH (McDermott, 1954)
- MIC is high = 50-100 µg/ml (pH5.5-6.0), poor activity for growing bacilli
- PZA kills non-growing persisters (Zhang et al., 2002), under hypoxic/anaerobic conditions (Wade and Zhang, 2004), more active against RIF-persisters (Hu, Coates and Mitchison, 2006)
- In vivo, impressive sterilizing activity → shortening therapy in mice (McDermott 1956)
- EBA studies in humans and in mice: INH has high EBA in first 2 days, PZA low EBA in first 2 weeks (Jindani and Mitchison), BUT in combination PZA kills persisters even during early stage (Grosset et al., 2012, PNAS)
- PZA is opposite to common antibiotics

Why is PZA Important? PZA Kills Persisters and Shorten Therapy

11

Yin-Yang Model: Effect of Drugs (Y. Zhang, Clin Pharmacol Ther. 2007; 82:595-600)

Day and Night Matter and Dark Matter Body and Mind Conscious and Subconscious

- Bacterial populations
- •Genetic vs phenotypic resistance
- •LTBI vs active TB
- •Explains current TB therapy
- •Explains INH prophylaxis for LTBI

Walsh McDermott (1909-1981) -Founding father of IOM, National Academies

Walshim Dermot

Clinical evaluation of INH-(Lasker Award, 1955)

Microbial persistence: Cornell model of TB persistence

Work on PZA:

- (a) acid pH requirement
- (b) PZA-resistant TB lose PZase
- (c) unique sterilizing activity of PZA in mice
- → Shortening of TB therapy (18-24 months to 6 months)

PZA Has High Sterilizing Activity with INHBasis for SCC

McCune R M, Tompsett R, McDermott W. J Exp Med 1956; 104: 763-802.

Mechanism of PZA Resistance

In 1967, Konno and McDermott showed PZA-resistant strains lose pyrazinamidase/nicotinamidase activity

Cloning of TB pncA Gene

 Cloned pyrazinamidase gene (*pncA*) and found mutation in *pncA* gene is major mechanism of PZA resistance (Scorpio & Zhang, 1996, Nature Med 2, 662-667)

pncA Mutations: Major Mechanism of PZA Resistance

Mutations in *pncA* gene: major mechanism of PZA resistance, 72-99% (85%), *pncA* mutations are highly diverse
A few low level PZA-R no *pncA* mutations

pncA Mutations as a Rapid Test for PZA Resistance

- PZA DST not performed routinely, acid pH, inoculum size, resistance surveys no PZA-R data
- Acid pH inhibits MTB (25-30% acid sensitive)
- BACTEC/MGIT tests at pH 6.0 MIC 100 μ g/ml, false resistance →156, 300 μ g/ml; takes 2 wks, expensive, not widely used
- *pncA* sequencing (560 bp): rapid PZA DST, good correlation between *pncA* mutations and PZA-R (85%)
- Some mutations found in susceptible strains? Asp12Ala; Ala28Thr; His43Tyr; Thr47Ala; Lys48Thr; Asp49Glu; Thr142Met
- Mayo Clinic in US

How Does PZA Work?

- PZA, prodrug activated by PncA to POA (Scorpio & Zhang 1996)
- Role of acid pH (Zhang et al., 1999)
- Henderson-Hasselbalch equation: relation pH and PZA activity (Zhang et al., 2002)
- PZA kills old, dormant bacilli more effectively (Zhang et al., 2002), kills persisters better under hypoxic/anaerobic (Wade & Zhang, 2004)
- POA disrupts MP, inhibits transport (Zhang et al., 2003)

Mode of Action of PZA

(Zhang et al., J. Antimicrob. Chemother. 2003, 52:790-5)

PZA=100 µg/ml; 5 day incubation at pH5.5

Synergy Between Diarylquinoline (J) and PZA (Andries et al., 2005, Science, 307: 223-7)

What is the Target of PZA?

- Fas-I proposed as a target of PZA (Zimhony et al., Nature Med, 2000, 6: 1043-7)
- Boshoff et al. showed Fas-I is the target of 5-Cl-PZA, but not the target of PZA (Boshoff, et al. J Bacteriol 2002, 184: 2167-72)

A New Target of PZA: RpsA (Shi et al. Science, 2011, 333: 1630-2)

A new target of PZA: POA binds RpsA (S1 protein)

RpsA overexpression conferred 5-fold PZA resistance from 100 to 500 $\mu g/ml$

A low level PZA-resistant *M. tuberculosis* DHM444 (MIC 200-300 μ g/ml PZA) without *pncA* mutation (Scorpio et al. 1997), contained 3-bp deletion (Δ GCC) Alanine missing in C-terminus of RpsA

(Shi et al. Science, 2011, 333: 1630-2)

RpsA (S1) and Trans-translation

Trans-translation, ubiquitous, is dispensable during growth, but critical under stress, remove stalled ribosomes, damaged mRNA and toxic proteins \rightarrow stress survival (L-form) and virulence (*Y. pestis, H. pylori, S. typhi*)

RpsA binds tmRNA and facilitates trans-translation by a multimeric complex tmRNA, SmpB, Ef-Tu, RpsA

PZA Interferes with Multiple Targets

(Shi et al. Science, 2011, 333: 1630-2)

Mechanisms of Action of Antibiotics

PZA and New TB Drug Candidates – Indispensable, Synergy

<u>Drug candidates under clinical development:</u>
-Rifapentine: Phase II
-Linezolid: Phase I and II
-Moxifloxacin/gatifloxacin, Phase II, III
-Diarylquinoline (TMC207): Phase II (MDR-TB, DS-TB)
-Nitroimidazoles: PA-824 and OPC-67683, Phase II trials
-Ethambutol analog, SQ-109, Phase II

Limitation of current drug discovery: None can replace PZA

CPTR: Build new regimens: PZA + TMC207 or PA-824 +...

Future Studies

- Mechanisms of Action Studies: new PZA targets and mutations, crystal structures, role of targets
- Drug Screens \rightarrow inhibitors of trans-translation
- Shorten TB Therapy: Z-combinations
- Rapid Detection of PZA Resistance: *pncA* sequencing
- Shorten MDR-TB Treatment based on PZA DST: Z^S-MDR vs Z^R-MDR

Four Stages of Scientific Acceptance – J.B.S. Haldane (1892 - 1964)

- 1. This is worthless nonsense PZA inhibits trans-translation
- 2. This is an interesting, but perverse, point of view PZA kills persisters (Yin) not growing bacilli (Yang)
- 3. This is true, but quite unimportant PZA disrupts MP
- 4. I always said so *pncA* mutations cause PZA resistance

Acknowledgements

Zhang Lab

Wanliang Shi Angelo Scorpio Zhonghe Sun Mary M. Wade Peihua Gu Akos Somoskovi

Diane Griffin

Mike Klag Al Sommer Richard Chaisson

Fudan University

Xuelian Zhang Xin Jiang Honghai Wang Wenhong Zhang

NIAID, NIH

Karen Lacourciere Christine Sizemore Clif Barry Richard Hafner Jing Bao Sharon Williams

