trans-translation: SsrA, SmpB, EF-Tu, RpsA, and PZA

Ken Keiler Penn State University

tmRNA ribonucleoprotein complex

- found in every species of bacteria, some plastids & primitive mitochondria
- highly abundant (~10% rRNA level)
- also called SsrA (Small, stable RNA)
- in *E. coli*, 2-4% of translation initiations terminate by translating tmRNA (5 times per ribosome per cell cycle)

tmRNA ribonucleoprotein complex

- found in every species of bacteria, some plastids & primitive mitochondria
- highly abundant (~10% rRNA level)
- also called SsrA (Small, stable RNA)
- in *E. coli*, 2-4% of translation initiations terminate by translating tmRNA (5 times per ribosome per cell cycle)

transcription and translation mistakes lead to *trans*-translation

EF-Tu binds the tRNA-like don SmpB mimics the miss

Decodi Riboso Cajetar Science DOI: 10

۱e

the RpsA (S1) enigma

- RpsA from *E. coli* and *Thermus thermophilus* binds tmRNA, but not as well as mRNA
- RpsA is not required for *trans*-translation in vitro using *E. coli* or *T. thermophilus* components
- RpsA levels in vivo do not affect *trans*-translation activity

the RpsA (S1) enigma

- RpsA from *E. coli* and *Thermus thermophilus* binds tmRNA, but not as well as mRNA
- RpsA is not required for *trans*-translation in vitro using *E. coli* or *T. thermophilus* components
- RpsA levels in vivo do not affect *trans*-translation activity

Could PZA act through RpsA and *trans*-translation in MTB?

- RpsA could be important for trans-translation in MTB
 - Mycobacterial RpsA has only 4 S1 repeats instead of 6
 - RpsA could be particularly important during latency
- RpsA-POA could inhibit *trans*-translation through a mechanism other than blocking RpsA-tmRNA binding

the RpsA (S1) enigma

- RpsA from *E. coli* and *Thermus thermophilus* binds tmRNA, but not as well as mRNA
- RpsA is not required for *trans*-translation in vitro using *E. coli* or *T. thermophilus* components
- RpsA levels in vivo do not affect *trans*-translation activity

Could PZA act through RpsA and *trans*-translation in MTB?

- RpsA could be important for trans-translation in MTB
 - Mycobacterial RpsA has only 4 S1 repeats instead of 6
 - RpsA could be particularly important during latency
- RpsA-POA could inhibit *trans*-translation through a mechanism other than blocking RpsA-tmRNA binding
- need biochemical studies with mycobacterial components

trans-translation is essential in many bacteria

Neisseria gonorrhoeae Shigella flexneri Haemophilus influenza Helicobacter pylori Mycoplasma genitalium and M. pneumonia Bacillus anthracis Staphylococcus aureus Francisella tularensis

*Mycobacterium smegmatis ***Mycobacterium tuberculosis**

some species have backup systems for ribosome release

- in all cases studied, deletion of tmRNA and the backup system is lethal
- MTB and *M. smegmatis* do not have obvious homologs of ArfA or YaeJ

Why is loss of *trans*-translation detrimental?

- 1. loss of translation capacity
- 2. accumulation of incomplete proteins
- 3. particular problems with membrane proteins

neither ssrA nor smpB can be deleted in Mycobacteria

1. no transposon hits from saturating mutagenesis in MTB

data from Griffin, et al. (2011) PLOS Path.

2. targeted genetic deletions cannot be isolated in MTB or *M. smegmatis*

depletion strains are under construction

3. small molecule inhibitors of *trans*-translation kill MTB and *M. smegmatis*

in vitro trans-translation assay with E. coli extracts

MIC of A7 against *M. tuberculosis* $H37Rv = 12 \mu M (4 mg/ml)$

M. smegmatis = 1.5μ M B. anthracis = 25μ M S. flexneri = 6μ M

MIC of A7 against *M. tuberculosis* $H37Rv = 12 \mu M (4 mg/ml)$

M. smegmatis = 1.5μ M B. anthracis = 25μ M S. flexneri = 6μ M

1. metabolism or bioavailability of active form of PZA

- 1. metabolism or bioavailability of active form of PZA
- PZA cannot block *trans*-translation when RpsA and tmRNA-SmpB are abundant (during growth), but can inhibit in latent cells where concentrations are lower

- 1. metabolism or bioavailability of active form of PZA
- PZA cannot block *trans*-translation when RpsA and tmRNA-SmpB are abundant (during growth), but can inhibit in latent cells where concentrations are lower
- 3. RpsA is required for *trans*-translation only during latency

- 1. metabolism or bioavailability of active form of PZA
- PZA cannot block *trans*-translation when RpsA and tmRNA-SmpB are abundant (during growth), but can inhibit in latent cells where concentrations are lower
- 3. RpsA is required for *trans*-translation only during latency
- if *trans*-translation is the target of PZA, other *trans*-translation inhibitors should be as effective as PZA against latent cells
- likewise, drugs that act like PZA might inhibit trans-translation
 - test in vitro
 - test in vivo with reporters for trans-translation activity

conclusions and suggestions

- loss of *trans*-translation in MTB is either lethal or has a major growth defect
 - do other trans-translation inhibitors act like PZA on latent cells?
 - do molecules that act like PZA inhibit trans-translation?
- RpsA is not required for *trans*-translation in other species
 - test the role of RpsA on *trans*-translation in vitro using MTB components
 - test whether RpsA-POA can interfere with *trans*-translation in vitro using MTB components

Nitya Ramadoss John Alumasa Lin Cheng <u>Jeff Cox (UCSF)</u> Paolo Manzanillo Lynn Connolly Trisha Lundrigan

<u>TB Alliance</u> Anna Upton Takushi Kaneko <u>Pete Schultz (GNF)</u> Achim Brinker Ingo Engels Yu Wang

NIH/NIGMS

A7 causes rapid turnover of SecY

Holly Cardoso and Tom Silhavy

when there is a backup system, inactivation of *trans*-translation typically causes defects in resuming proliferation

Proliferation after stationary phase and stasis induced by T/A system toxins: *E. coli*

Proliferation after macrophage invasion: Yersinia pestis, Y. pseudotuberculosis Salmonella enterica, S. typhimurium

Proliferation after root cell invasion: *Bradyrhizobium japonicum*

Proliferation after dispersal state: *Caulobacter crescentus*

Other general phenotypes: increased sensitivity to oxidative stress and antibiotics

neither *ssrA* nor *smpB* can be deleted in *Mycobacteria*, but...

- severe growth defects can prevent recovery of Tn insertion mutants and genetic deletions (depletion strains are required to confirm)
- A7 acts upstream of alternative release mechanisms

conclusions and speculations

- ➡If trans-translation is essential and PZA inhibits trans-translation through RpsA, why does PZA work so much better on latent cells?
- ➡If MTB has a backup system for *trans*-translation, PZA may still act through *trans*-translation by preventing a return to proliferation.

in vitro translation is not inhibited

representative gel

in vitro translation is not inhibited

conclusions and speculations

- ➡If trans-translation is essential and PZA inhibits trans-translation through RpsA, why does PZA work so much better on latent cells?
 - 1. metabolism or bioavailability of active form of PZA
 - 2. PZA is not a great inhibitor and cannot block *trans*-translation when RpsA and tmRNA-SmpB are abundant (during growth), but can inhibit in latent cells where concentrations are lower

conclusions and speculations

- ➡If trans-translation is essential and PZA inhibits trans-translation through RpsA, why does PZA work so much better on latent cells?
 - 1. metabolism or bioavailability of active form of PZA
 - 2. PZA is not a great inhibitor and cannot block *trans*-translation when RpsA and tmRNA-SmpB are abundant (during growth), but can inhibit in latent cells where concentrations are lower
 - 3. RpsA is required for *trans*-translation only during latency
 - if *trans*-translation is the target, other *trans*-translation inhibitors should be as effective as PZA against latent cells