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tmRNA ribonucleoprotein complex
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S”‘*’B% tmRNA trans-translation resolves “non-stop”
translation complexes
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transcription and translation mistakes lead
to frans-translation
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EF-Tu binds the tRNA-like domain of tmRNA and
SmpB mimics the missing mRNA
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C-terminal Decoding in the Absence of a Codon by tmRNA and SmpB in the
helix Ribosome

Cajetan Neubauer, et al.

Science 335, 1366 (2012);

DOI: 10.1126/science.1217039



the RpsA (S1) enigma

* RpsAfrom E. coli and Thermus thermophilus binds tmRNA, but not
as well as mRNA

* RpsA s not required for trans-translation in vitro using E. coli or T.
thermophilus components

* RpsA levels in vivo do not affect frans-translation activity
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Could PZA act through RpsA and trans-translation in MTB?

* RpsA could be important for trans-translation in MTB
- Mycobacterial RpsA has only 4 S1 repeats instead of 6
- RpsA could be particularly important during latency

* RpsA-POA could inhibit trans-translation through a mechanism
other than blocking RpsA-tmRNA binding
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* RpsAfrom E. coli and Thermus thermophilus binds tmRNA, but not
as well as mRNA

* RpsA s not required for trans-translation in vitro using E. coli or T.
thermophilus components

* RpsA levels in vivo do not affect frans-translation activity

Could PZA act through RpsA and trans-translation in MTB?

* RpsA could be important for trans-translation in MTB
- Mycobacterial RpsA has only 4 S1 repeats instead of 6
- RpsA could be particularly important during latency

* RpsA-POA could inhibit trans-translation through a mechanism
other than blocking RpsA-tmRNA binding

* need biochemical studies with mycobacterial components



trans-translation is essential in many bacteria

Neisseria gonorrhoeae

Shigella flexneri

Haemophilus influenza

Helicobacter pylori

Mycoplasma genitalium and M. pneumonia
Bacillus anthracis

Staphylococcus aureus

Francisella tularensis

*Mycobacterium smegmatis
*Mycobacterium tuberculosis
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some species have backup systems for ribosome
release

* in all cases studied, deletion of tmMRNA and the backup system is lethal
* MTB and M. smegmatis do not have obvious homologs of ArfA or YaeJ



Why is loss of trans-translation detrimental”?

1. loss of translation capacity
2. accumulation of incomplete proteins
3. particular problems with membrane proteins
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neither ssrA nor smpB can be deleted in Mycobacteria

1. no transposon hits from saturating mutagenesis in MTB

Rv30¢ 8(:4 Rv3097c /L

data from Giriffin, et al. (2011) PLOS Path.

FtsE FtsX SmpB )L Ry3099c > [tmRNA)

Rv3104c R 31030J>

2. targeted genetic deletions cannot be isolated in MTB or M. smegmatis
» depletion strains are under construction

3. small molecule inhibitors of frans-translation kill MTB and M. smegmatis



In vitro trans-translation assay with E. coli extracts
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A7 specifically inhibits frans-translation in vitro

trans-translation
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A7 specifically inhibits frans-translation in vitro
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A7 specifically inhibits frans-translation in vitro

trans-translation translation only
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If trans-translation is essential and PZA inhibits trans-translation through
RpsA, why does PZA work so much better on latent cells?

1. metabolism or bioavailability of active form of PZA
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RpsA, why does PZA work so much better on latent cells?

1. metabolism or bioavailability of active form of PZA

2. PZA cannot block frans-translation when RpsA and tmRNA-

SmpB are abundant (during growth), but can inhibit in latent cells
where concentrations are lower
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If trans-translation is essential and PZA inhibits trans-translation through
RpsA, why does PZA work so much better on latent cells?

1. metabolism or bioavailability of active form of PZA

2. PZA cannot block trans-translation when RpsA and tmRNA-

SmpB are abundant (during growth), but can inhibit in latent cells
where concentrations are lower

3. RpsA is required for trans-translation only during latency

e if frans-translation is the target of PZA, other trans-translation
inhibitors should be as effective as PZA against latent cells

e likewise, drugs that act like PZA might inhibit trans-translation
= test in vitro

= test in vivo with reporters for trans-translation activity



conclusions and suggestions

*loss of trans-translation in MTB is either lethal or has a major growth
defect

= do other trans-translation inhibitors act like PZA on latent cells?
= do molecules that act like PZA inhibit trans-translation?

* RpsA is not required for trans-translation in other species

= test the role of RpsA on trans-translation in vitro using MTB
components

= test whether RpsA-POA can interfere with trans-translation in
vitro using MTB components
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when there is a backup system, inactivation of
trans-translation typically causes defects in
resuming proliferation

Proliferation after stationary phase and stasis induced by T/A system toxins: E. coli

Proliferation after macrophage invasion: Yersinia pestis, Y. pseudotuberculosis
Salmonella enterica, S. typhimurium

Proliferation after root cell invasion: Bradyrhizobium japonicum
Proliferation after dispersal state: Caulobacter crescentus

Other general phenotypes: increased sensitivity to oxidative stress and antibiotics



neither ssrA nor smpB can be deleted in Mycobacteria,
but...

« severe growth defects can prevent recovery of Tn insertion mutants and genetic
deletions (depletion strains are required to confirm)

« A7 acts upstream of alternative release mechanisms

alternative release
mechanisms



conclusions and speculations

=|f frans-translation is essential and PZA inhibits trans-translation
through RpsA, why does PZA work so much better on latent cells?

=|f MTB has a backup system for trans-translation, PZA may still act
through frans-translation by preventing a return to proliferation.

PZA
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In vitro translation i1s not inhibited

representative gel
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conclusions and speculations

=|f frans-translation is essential and PZA inhibits trans-translation
through RpsA, why does PZA work so much better on latent cells?

1. metabolism or bioavailability of active form of PZA

2. PZA is not a great inhibitor and cannot block trans-translation
when RpsA and tmRNA-SmpB are abundant (during growth), but
can inhibit in latent cells where concentrations are lower
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2. PZA is not a great inhibitor and cannot block trans-translation
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can inhibit in latent cells where concentrations are lower

3. RpsA is required for trans-translation only during latency

e if frans-translation is the target, other trans-translation inhibitors
should be as effective as PZA against latent cells



