pncA mutations in MDR-TB strains from Panama

Petros C. Karakousis, M.D. Associate Professor of Medicine and International Health The Johns Hopkins University

MDR-TB in Panama

 Culture-based methods used for DST

- MDR-TB in Panama
 - 2.0% (0-6.0%) of new cases
 - 12.1% (0–28.3%) of previously treated cases

WHO, M/XDR TB 2010 report on surveillance and response)

 The prevalence of individual genetic mutations associated with drug resistance among MDR-TB clinical isolates from Panama is unknown.

Characterization of *Mtb* drugresistance mutations in Panama

- Archived DST-confirmed MDR-TB clinical isolates from Panama (ICGES)
- Whole genome sequencing performed at Texas A&M University (TAMU)
- Multiple Sequence Alignment
- Identification of mutations associated with drug resistance and calculation of mutation frequencies

Study Design

Geographic distribution of drug-sensitive strains

- Panamá Metro area: 84% (26/31)
- Colón: 13% (4/31)

Geographic distribution of MDR-TB strains

- Panamá Metro area: 34% (23/67)
- Colón: 33% (22/67)
- Chiriquí: 15% (10/67)

WHO, 2010

Genealogy: MDR-TB strains

Mutations associated with INH and RIF resistance

Frequency of mutations associated with INH and RIF resistance

Drug Resistance	Genes	Mutations	Number of Resistant Strains (Frequency out of 67 Strains)	Reported Mutation Frequency	
INH	katG	S315T/G	47 (70.1%)	50-95%	
	<i>inhA</i> promoter	c-15t	13 (19.4%)	8-43%	
RIF	rpoB	D516F/V	4 (6.0%)		
		H526D/Y	9 (13.4%)	95%	
		S531L	53 (79.1%)		

Chia BS et al. *PLoS One.* 2012;7:e40456

Novel mutations potentially accounting for INH resistance

Candidate Mutations (No. of strains in which mutation is found)	Predicted Outcome	
3' 320 bp of <i>katG</i> deleted (1)	Truncated KatG	
katG W198* (1)	Truncated KatG	
katG Q722* (1)	Truncated KatG	
katG D94G and ahpC P44R (2)	Inactivated KatG	
500kb duplication spanning <i>Rv3177-Rv3573c</i> (1)	Duplicated Nat, increased INH inactivation	

Chia BS et al. *PLoS One.* 2012;7:e40456

MDR-TB and PZA resistance: Global prevalence

Country	Percent PZA resistance among MDR-TB isolates
Japan	53% ¹
South Africa	54% ²
Peru	59% ³
Cambodia	47 % ⁴

¹Ando H et al. *Clin Microbiol Infect* 2010; 16: 1164–1168.
²Louw GE et al. *Int J Tuberc Lung Dis* 2006; 10: 802–807.
³Saravia JC et al. *Int J Tuberc Lung Dis* 2005; 9: 421–429.
⁴Pierre-Audigier C et al. *Int J Tuberc Lung Dis* 2012; 16: 221–223.

Association of MDR with pncA mutations

Sensitivity to INH/RIF	# strains with mutations in <i>pncA</i> (%)
Yes	0/31 (0%)
No (MDR-TB)	33/67 (49.3%)

pncA mutations in 33 MDR-TB strains

Mutations in <i>pncA</i> gene	Number of strains	Reported in association with
	(%)	PZA resistance (# of strains)
V9A (GTG→GCG)	1 (3%)	Yes (1)
F13V (TTC→GTC)	1 (3%)	No – F13S (1)
T47A (ACC→GCC)	1 (3%)	Yes (7)
K48T (AAG→ACG)	3 (9%)	No – K48E (1)
H57Y (CAC→TAC)	3 (9%)	Yes (1)– H57D (16)
H71T (CAT→TAT)	1 (3%)	No– H71 (14)
T76P (ACT→CCT)	1 (3%)	Yes (9)
A79E (GCG→GAG)	4 (12%)	No– A79V (1)
F94 Insertion (+A)	1 (3%)	No
G108E (GGA→GAA)	1 (3%)	No– G108R (2)
W119R (TGG→CGG)	1 (3%)	Yes (3)
w119STOP (TGG→TGA)	5 (15%)	Yes (1)
Q122STOP(CAA→TAA)		No
G132 Insertion (+A)	8 (24%)	No
A134V (GCC→GTC)	1 (3%)	Yes (6)
A146V(GCG→GTG)	1 (3%)	Yes (1)– A146 (3)
L159P (CTG→CCG)	1 (3%)	Yes (4)
A165I (GCC→ATC)	1 (3%)	No

1

http://www.moleculartb.org/gb/pdf/doc/Revue.pdf

Familial distribution of strains with pncA mutations

pncA mutations in FQ-resistant strains

PZA resistance has been reported in > 90% of FQ-resistant MDR strains[†].

Non-synonymous SNPs or indels were found in 4/6 MDR strains with significant *gyrA* mutations (A90V, D94G).

Pierre-Audigier C et al. Int J Tuberc Lung Dis 2012;16:221-23

Conclusions

- Half of all MDR-TB, but none of the INH/RIFsensitive, strains from Panama were found to have pncA mutations.
- The LAM family was highly represented among strains with *pncA* mutations.
- *pncA* mutations were distributed throughout the gene, with 15/36 mutations previously reported to be associated with PZA resistance.
- The most common mutation (G132 insertion) was found in 8 clustered LAM strains, accounting for a quarter of cases.

Acknowledgments

Johns Hopkins Center for TB Research

Bing Shao Chia Edith Torres-Chavolla, PhD Dalin Rifat, PhD

Lee Klinkenberg, PhD

ICGES, Panama

Fedora Lanzas

Juan M. Pascale, PhD

Texas A&M University Thomas loerger, PhD

James Sacchettini, PhD