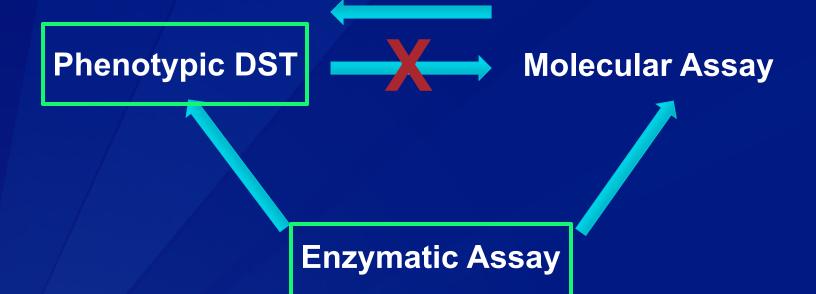
Development of a PZA Pipeline to Improve Phenotypic and Molecular-Based Susceptibility Testing for PZA

James Posey, PhD


PZA Workshop September 5-6, 2012

National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention

Division of Tuberculosis Elimination

PZA in vitro Activity

- Requires acidic culture conditions
 - Narrow pH range
 - Too alkaline = no PZA activity
 - Too acidic = inhibition of growth in drug-free media
 - pH 5.6 6.0 best
- Active against M. tuberculosis complex
 - Except M. bovis
 - Inherently PZA-resistant

Phenotypic Detection of PZA Resistance

Indirect

- Pzase activity¹
 - PZase positive = PZA-susceptible
 - PZase negative = PZA-resistant

Direct

- Culture methods
 - Growth on or in media containing PZA
 - Problematic
 - Both resistant and susceptible bacilli inhibited by acid pH
 - Inoculum size
 - Poor reproducibility^{2, 3, 4}
 - False resistance and susceptibility
- 1. Wayne(1974), Amer. Rev. Resp. Dis., 109:147-151.
- 2. Chedore, et. al., (2010) J. Clin. Mirobiol,, 48:300-301
- 3. Chang, Yew and Zhang, (2011), Antimicrob. Agents & Chemo., 55:4499-4505.
- 4. Simons, et. al., (2012), J. Clin. Microbiol., 50:428-434.

Factors Affecting in vitro PZA Activity

pH of the medium¹

- Can inhibit growth (~ 10% of strains)
- Theoretical calculations¹ (Henderson-Hasselbach equation)
 - If PZA MIC = 50 μg/ml @ pH 5.5
 - $_{\circ}$ MIC @ pH 6.1 = 200 μ g/ml
- Experimental results correlate well²

Inoculum size¹

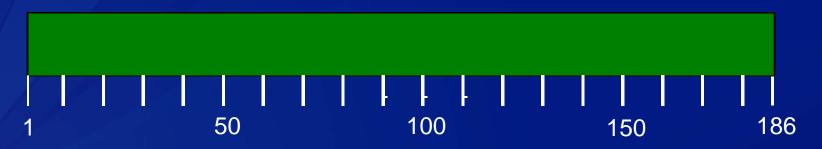
- Large inoculum reduces PZA activity
 - Much more pronounced than other drugs
 - Neutralization of media
 - Ammonia produced by deamination of PZA
- 1. Zhang et. Al. (2002), J. Med. Microbiol. **51**(1):42-49.
- 2. Salfinger and Heifets (1988), Antimicrob. Agents Chemother. 32:1002-1004.

Research Plan

Improve MGIT testing protocol

- Hypothesis = False resistance is caused by over inoculation
- Experimental Approach
 - Test reduced inoculum sizes (i.e., # of bacilli)
 - Test Time Past Detection (TPD) of seed tube
- Pilot Project (16 strains)
 - Evaluate new dilution scheme
 - Evaluated time post positive of seed tube
 - 10 strains (with no *pncA* mutation) repeatedly found resistant using standard inoculation protocol were susceptible using a reduced inoculum

Research Plan


- Impact of specific pncA mutations on PZA MIC
 - Phase 1: High Concentration Range
 - PZA = 0, 300, 400, 600 & 800 μg/ml
 - NAm = 0, 1600, 1800, 2000, 2500 μg/ml
 - Phase 2: Low Concentration Range (when necessary)
 - PZA = 0, 50, 100, 200, 300 μg/ml
 - NAm = 0, 100, 300, 600, 1200 μg/ml
 - Phase 3: Susceptible Isolates (WT pncA)
 - Determine the best MIC range
 - Test new dilutions for 3-5 days post positive seed tubes

Molecular Diagnosis of PZA Resistance

- What is the first requirement for development of a great molecular diagnostic?
 - A mechanism of resistance
- Mutations within pncA are associated with PZA resistance in M. tuberculosis.

PncA

- 186 amino acids
- No "hotspot" for mutations
 - DTBE LB culture collection contains isolates with mutations at 70 different amino acids
 - A database of published mutations within PncA describes isolates with mutations in an additional 45 positions
- Multiple different substitutions can occur at each position
 - For example: the histidine at amino acid 57 has been changed to an arginine, aspartic acid, leucine, proline, or tyrosine in different isolates
- Some strains contain insertions or deletions in pncA
- Some strains contain mutations in the promoter region that would likely affect the amount of PncA protein made

Goal: Design a rapid, simple system to evaluate the effect of PncA mutations on PZase activity

PncA Enzymatic Assay

- Use E. coli
- Transfer mutant M. tuberculosis pncA alleles into an E. coli strain that does not produce its own PncA
- Make expression of the mutant PncA controllable
- Examine PZase activity of mutant pncA allele
 - Add substrate to E. coli culture
 - Observe color change

PncA Enzymatic Assay

Red coolor change == rfunction tabra 2 as esusee just la let

PncA Enzymatic Assay

Vector Only Control

2 3

WT PncA Control

2 3 4

Tube	IPTG	PZA	Expected Results	
1			Resistant	
1	+	+	no color change	
2	+	-	no color change	
3	-	+	no color change	
4	-	-	no color change	

Correlate PZA MIC with Enzymatic Activity

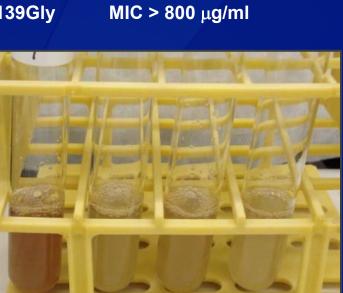
pncA Mutation Collection

124 strains with a SNP

- 76 with MIC and enzymatic data
 - 50 unique SNPs
 - Occur at 39 different codons

32 strains with an indel or promoter mutation

- 22 with MIC and enzymatic data (indels only)
 - 14 unique indels
 - 4 unique promoter mutations
 - 100% exhibited MIC > 800 μg/ml for PZA


MIC and Enzymatic Data of 50 Unique pncA nSNPs

ENZYME ACTIVITY LEVEL MIC LEVEL (µg/ml) NUMBER OF STRAINS (%)

0 (not detected)		36 (Total)
	> 800	23 (64)
	400 - 800	8 (22)
	< 300	5 (14)
1-5 (weak to very strong)		14 (Total)
	> 800	1 (7)
	400 - 800	1 (7)
	< 300	12 (86)

Val139Gly


His137Arg

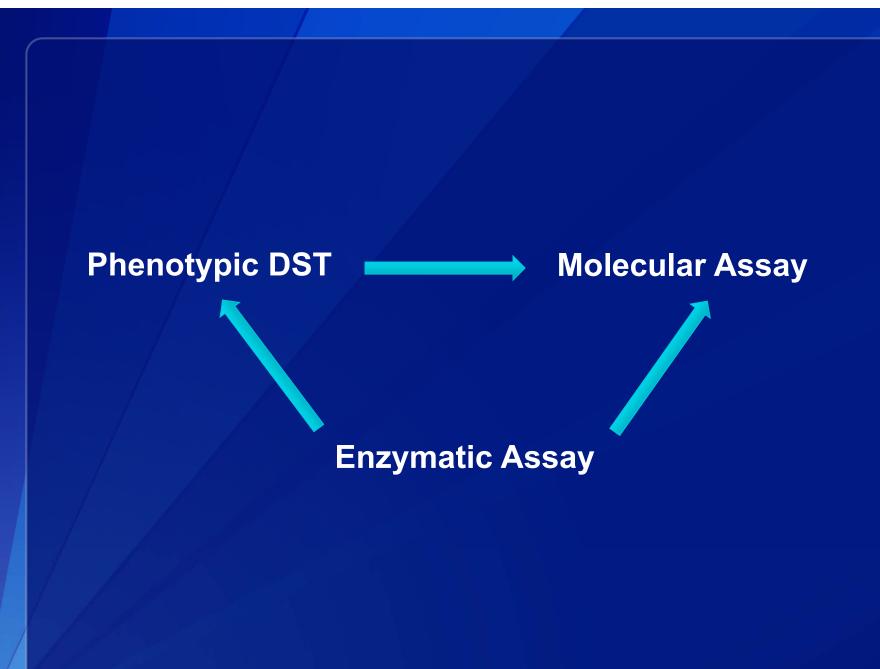
MIC < 300 $\mu g/ml$

Asp110Gly

MIC < 300 μ g/ml

Glu37Val

MIC < 300 μ g/ml


Interesting Mutation

□ Codon 47

- Threonine to Proline (N = 2)
 - PZA MIC > 800 μg/ml
 - NAm MIC > 2500 μg/ml
- Threonine to Alanine (N = 5)
 - PZA MIC < 300 μg/ml
 - NAm MIC < 1600 μg/ml

Summary

- Improved the MGIT 960 PZA assay
 - Reducing the size of the inoculum
- Developed an PncA enzymatic assay
- Correlate a pncA mutation with PZA MIC and enzyme activity
- Useful for developing molecular assays

Future Work

- Continue to perform MIC and enzymatic assays
 - CDC collection
 - Collaborators
 - Susceptible strains (WT pncA)
- Structural modeling of PncA mutants
- Generate antibody to PncA
- Develop a database
 - Available to scientific community
 - MIC and enzymatic data for each mutation

Acknowledgments

PZA TEAM

- Glenn Morlock, MS
- Seidu Malik, PhD
- Melisa Willby, PhD
- Kris Birkness, MS
- Alexandra Mercante, PhD
- Laboratory Branch / Division of TB Elimination
- Funding
 - Division of TB Elimination
 - NIH