# PZA: A New Look Based on RNASeq, the Hollow Fiber System, and Patient Level Data

#### **Tawanda Gumbo**

Office of Global Health
University of Texas Southwestern Medical
Center, Dallas, Texas

#### The team: this work has many fathers & mothers

University of Texas Southwestern:

Shashikant Srivastava, Jotam Pasipanodya, Devyani Deshpande, Sandirai Musuka, Carleton Sherman, Aurelia Schmalstieg Chandima S. Wasana Siyambalapitiyage Dona, Nicolai van Oers

2. University of Cape Town:

Helen McIlleron, Peter Smith, Emmanuel Chigutsa

• 3. Brewelskloof hospital, Western Cape

Peter Wash, André Burger

#### M. tuberculosis in the hollow fiber system



Gumbo T, et al. (2006) *J Infect Dis* 2006;195:194-201

### The Hollow Fiber Model of TB

Developed in 2001 for bactericidal effect

2004 for sterilizing effect (both semi-dormant bacteria at low pH and NRP [Wayne type II])

We also examine *M. tuberculosis* within macrophages

#### M. tuberculosis in the hollow fiber system

$$dX_{1}/dt = R(1) - (SCL/V_{c}) \times X_{1};$$

$$dN_{s}/dt = K_{gmax-s} \times (1 - L_{s}) \times N_{s}$$

$$\times E - K_{kmax-s} \times M_{s} \times N_{s}; \qquad (2)$$

$$dN_R/dt = K_{gmax-R} \times (1 - L_R) \times N_R$$
$$\times E - K_{kmax-R} \times M_R \times N_R ; \qquad (3)$$

$$E = 1 - (N_R + N_S)/POPMAX; (4)$$

$$L = (X_1/V_c)^H/[(X_1/V_c)^H + C_{50}g^H],$$

where 
$$H = H_{g-S}$$
 or  $H_{g-R}$ , (5)

$$M = (X_2/V_c)^H/[(X_2/V_c)^H + C_{50}k^H],$$
where  $H = H_{k-S}$  or  $H_{k-R}$ . (6)

UT SOUTHWESTERN
Office of Global Health

The Journal of Infectious Diseases

#### Population-median parameter estimates of pharmacodynamic model.

| Parameter                          | Estimate              | SD                    |
|------------------------------------|-----------------------|-----------------------|
| Clearance rate, L/h                | 8.926                 | 0.777                 |
| Volume of central compartment, L   | 179.349               | 27.041                |
| $K_{gmax-S}$ , $log_{10}$ cfu/mL/h | 0.415                 | 0.411                 |
| $C_{50}g-S$ , mg/L                 | 5.103                 | 3.909                 |
| $H_{g-S}$                          | 4.759                 | 5.276                 |
| $K_{gmax-R}$ , $log_{10}$ cfu/mL/h | 0.023                 | 0.014                 |
| C <sub>50</sub> g-R, mg/L          | 1.090                 | 1.178                 |
| $H_{g-R}$                          | 8.857                 | 8.179                 |
| $K_{kmax-S}$ , $log_{10}$ cfu/mL/h | 8.699                 | 4.047                 |
| $C_{50}k-S$ , mg/L                 | 14.009                | 12.710                |
| $H_{k-S}$                          | 5.122                 | 3.693                 |
| $K_{kmax-R}$ , $log_{10}$ cfu/mL/h | 10.459                | 12.187                |
| $C_{50}k-R$ , mg/L                 | 16.867                | 11.864                |
| $H_{k-R}$                          | 3.316                 | 1.126                 |
| POPMAX, cfu/mL                     | $2.547 \times 10^9$   | $3.078 \times 10^9$   |
| Total population, cfu/mL           | $1.962 \times 10^{6}$ | $5.878 \times 10^{5}$ |
| Drug-resistant population, cfu/mL  | 1.123                 | 0.059                 |

- M. tuberculosis in "whatever" metabolic state
- Pharmacokinetic system for 1-, 2-, 3-, or 4drugs: control of dynamic drug concentrations to mimic exact PKs one wants
- Easy & repetitive sampling over up to 8 weeks (or up to 6 months) for several markers or assays to be used in quantitative & systems pharmacology:
  - cell counts, resistant Mtb, RNA Seq., molecular markers such as particular proteins (e.g., efflux pumps)

## **Pathways**

HFS quantitative output on the relationship between changing concentration and microbial effect | ↑

Systems pharmacology equations

Clinical prediction: Dose, Treatment & ADR rates

Clinical validation: dose, treatment rates, ADR rates

#### M. tuberculosis in the hollow fiber system



Gumbo T, et al. (2006) *J Infect Dis* 2006;195:194-201



## PZA Standard Doses In HFS Vs. In patients

|                                         | <u>Patients</u> | Hollow fiber |
|-----------------------------------------|-----------------|--------------|
| Kill rates:                             |                 |              |
| Day 0-4 (log <sub>10</sub> CFU/ml/day)  | 0.1±0.2         | -0.1         |
| Day 4-14 (log <sub>10</sub> CFU/ml/day) | 0.12±0.05       | 0.09-0.1     |
| Time to resistance emergence:           | 2-3 wks         | 2-3 wks      |

Patient data sources: Jindani et al. Am Rev Respir Dis 1980; 121: 939-49 Yeager et al Trans Annu Meet Natl Tuberc Assoc 1952; 48: 178-201.

# Sterilizing effect Vs. PK/PD parameter

| Time                  | Week 2 | Week 3 | Week 4 |
|-----------------------|--------|--------|--------|
| PK/PD Index           |        |        |        |
| C <sub>max</sub> /MIC | 0.56   | 0.63   | 0.61   |
| AUC/MIC               | 0.90   | 0.89   | 0.80   |
| %T>MIC                | 0.76   | 0.78   | 0.75   |

 $EC_{90} AUC_{0-24} / MIC = 210$ 

## **CLINICAL STUDY: PZA & Streptomycin**

- 396 TB patients in Kenya, Tanzania and Uganda in 1965-7
- Each patient received 1g im streptomycin daily
- Groups of patients (dose is mean per patient day):
  - #1: PZA 184.8 mg/kg/week as 3 divided each day.
  - #2: PZA 182.4 mg/kg/week as a single daily dose.
  - #3:PZA 190.8 mg/kg/week as 3 doses per week
- Examined for sputum conversion each month.

|                                                                      | Result for dosing regimen |                |                            |
|----------------------------------------------------------------------|---------------------------|----------------|----------------------------|
| Parameter (measurement)                                              | 500 mg three times a day  | 1,500 mg daily | 3,000 mg alternate<br>days |
| Serum AUC <sub>0–168</sub> (mg · h/liter)                            | 2,189                     | 2,267          | 2,163                      |
| ELF $AUC_{0-24}/MIC^a$                                               | 111                       | 115            | 110                        |
| Serum $C_{\text{max}}$ (mg/liter)                                    | 20.2                      | 33.8           | 67.5                       |
| $ELF C_{max}/MIC^a$                                                  | 7.2                       | 12.0           | 24                         |
| Sputum conversion (no. converted/total no. [%])                      |                           |                |                            |
| 2-month time point                                                   | 30/65 (46)                | 34/70 (49)     | 39/71 (55)                 |
| End of 6 months                                                      | 28/66 (42)                | 32/72 (44)     | 42/73 (58)                 |
| Any radiological improvement (no. showing improvement/total no. [%]) | 32/63 (51)                | 41/70 (59)     | 40/70 (57)                 |
| Pyrazinamide resistance (no. resistant/total no. [%])                | 21/63 (33)                | 20/65 (31)     | 17/68 (25)                 |
| Streptomycin resistance (no. resistant/total no. [%])                | 39/65 (60)                | 38/69 (55)     | 29/72 (40)                 |

<sup>&</sup>lt;sup>a</sup> A modal MIC of 50 mg/liter, a bioavailability of 1, and an ELF-to-plasma ratio of 17.8 were assumed based on published studies (13, 18, 82, 88, 106). Pyrazinamide resistance was as defined using methods that differ from current standards.



### Population PK data

- PKs: Wilkins J et al. Eur. J Clin. Pharmacol. 2006; 62:727-735.
  - Serum clearance= 3.4 L/h, Volume=30 L.
  - Serum clearance increases by 0.5 L/h for every 10 kg increase in weight above 48kg
  - Volume of distribution increases by 4.3 L for every 10 kg increases in weight above 48kg.
  - Volume of distribution in men is 5L greater than in women
- MICs at pH 5.8: Salfinger M & Heifets LB. AAC 1988;32:1002-4.

#### Computer-aided clinical trial simulation

- 100,000 patients simulated
- Epithelial lining fluid conc. from Conte et al (AAC 1999; 43: 1329-1333)
- Man to woman ratio 68/32 (CDC)
- Weight distribution 2005 USA study
- How likely does 1.5g, 2g, 3g, 4g, 5g oral achieve the EC<sub>90</sub> in these patients?
- Similar simulation for 10,000 children

## Clinical Mtb isolates: MICs at pH 5.8







# Use of HFS-derived PK/PD to identify resistance breakpoints

- Use of population PK parameters
- Variability of PZA clearance with weight
- Variability of INH clearance with NAT2\*4 alleles
- Rifampin pre-and post auto-induction
- Ethambutol & Moxifloxacin
- ELF concentrations utilized
- Monte Carlo simulations for ability to achieve AUC/MIC associated with 90% effect (EC<sub>90</sub>)
- Resistance= inability to achieve EC<sub>90</sub> in >90% of TB patients



UT SOUTHWESTERN
Office of Global Health

Gumbo et al. Antimicrob. Agents Chemother. 2010:54;1484-1491

Proportion of M. tuberculosis isolates with MIC

# HFS/pop PK/MIC breakpoint

| Drug         | Old breakpoint (mg/L) | Proposed (mg/L) |
|--------------|-----------------------|-----------------|
| Moxifloxacin | 1                     | 1               |
| Ofloxacin    | 2                     | 0.5             |
| Isoniazid    | 0.2/1.0               | 0.03/0.125      |
| Rifampin     | 1                     | 0.0625          |
| Ethambutol   | 5/7.5                 | 4               |
| Pyrazinamide | 100                   | 50              |

## PZA PK/PD: Mice & Guinea pig

- Examined in BALB/c mice, a typical example of intracellular bacteria
- Examined in Guinea pigs, a typical example of extracellular bacteria
- Effect was AUC/MIC linked
- Also found that higher doses than current needed

# Examination of PZA transcriptome as a single agents and in combination

- PZA, INH, RIF and the combination of the 3 effect against Mtb at AUCs similar to those achieved in patients; "NRP", semi-dormant bacilli
- Mtb examined using RNAseq at several time points
- Analyzed using formal algebraic models and systems pharmacology differential equations
- Also simple STRING predicted protein-protein interactions for ease of visualization

| U                                       | p-regulated        | Down-regulated |
|-----------------------------------------|--------------------|----------------|
| • INH                                   | 403                | 427            |
| • RIF                                   | 363                | 646            |
| • PZA                                   | 253                | 240            |
| • Combo                                 | 355                | 732            |
| • Day 42 NRP                            | 419                | 928            |
| • SDB pH 5.8                            | 985                | 923            |
| UT SOUTHWESTERN Office of Global Health | Srivastava S, et a | al. Submitted. |

#### PZA major gene networks

- 240 down-regulated genes (~6%)
- Genes involved in fatty acid synthesis
- Genes involved in cysteine metabolism
- Genes involved in NAD biosynthesis
- Genes involved in metal/cation transport
- Efflux pump genes & their regulators (at least 12 efflux pumps within 24hrs)

#### Combination

- Direction and pathways most closely resembles combination of PZA and RIF
- Down-regulation of ~18% of all Mtb genes by this combination
- Up-regulation consistent with starvation signaling-stringent response

Many-to-many interactions versus "one-ligand one receptor" or "one on one"



Excellent machine learning based analysis of net-work wide interaction and drug design



#### M. tuberculosis in the hollow fiber system



Gumbo T, et al. (2006) *J Infect Dis* 2006;195:194-201

# Scheme of hollow fiber study



UT SOUTHWESTERN Srivastava et al. <u>J Infect. Dis</u>. 2010: 201: 1225

#### DAY 7 EMB AND INH RESISTANCE



## Isoniazid EBA



UT SOUTHWESTERN
Office of Global Health

Srivastava et al. *J Infect. Dis.* 2010: 201: 1225



UT SOUTHWESTERN Srivastava et al. <u>J Infect. Dis</u>. 2010: 201: 1225

#### M. tuberculosis in the hollow fiber system



Gumbo T, et al. (2006) *J Infect Dis* 2006;195:194-201

## Resistance suppression

 The higher the %T<sub>MIC</sub>, the less the smaller the resistant population for the same AUC/MIC

 %T<sub>MIC</sub> of 66.7% minimal exposure associated with best suppression of resistance  $Y = aX^2 + bX + k$ 

- Y: size of the resistant sub-population
- X: chemotherapeutic drug exposure value
- k: drug resistant subpopulation in non-treated controls.
- a: leading coefficient (starts as a positive value in the upright "U" curve, but changes to a negative value with increased duration of therapy
- -b/2a: drug exposure associated with the highest drugresistant sub-population in the inverted "U", or the lowest resistant subpopulation with an upright "U"

#### PZA major gene networks

- 240 down-regulated genes (~6%)
- Genes involved in fatty acid synthesis
- Genes involved in cysteine metabolism
- Genes involved in NAD biosynthesis
- Genes involved in metal/cation transport
- Efflux pump genes & their regulators (at least
   12 efflux pumps within 24hrs)

#### M. tuberculosis in the hollow fiber system









# Study design

- Three drug therapy in HFS (INH, RIF, PZA), with 3 different  $t_{1/2}$  in HFS
- Bactericidal effect: drug susceptible
- Sterilizing effect: drug susceptible
- Bactericidal effect: pre-seeded with INH resistant (katG 315) and RIF resistant (rpoB S531L) of 0.5% total proportion each
- Different patterns of non adherence examined: random forgetting, start-stop, start-stop-start-stop
- Duration of therapy: 28 & 56 days



#### Failure of therapy vs proportion of non-adherence

- Degree of non-adherence = proportion of doses missed
- Reference regimen = daily therapy for 56 doses
- 5/7 regimen = de facto 29% non-adherence
- Three times a week regimen = de facto 57% nonadherence



#### Microbial Kill

- Non-compliance accounted for 70.5% of all the variance in bacterial load (p<0.0001)</li>
- 60% non-compliance was associated with a slower rate of kill up to day 14 (p=0.001), after which it stopped kill
- All regimens with ≥80% non-compliance failed.
- Breakpoint non-compliance associated with failure of therapy is therefore just below 60% for daily therapy

#### **Drug Resistance**

• There was no emergence of MDR-TB

# If MDR-TB does not arise from poor compliance, why does it?

- Hypothesis: Perhaps the PK system (i.e., patient's xenobiotic metabolism) is to blame
- HFS output: kill rates, sterilizing effect rates (i.e., log<sub>10</sub> CFU/ml/day)
- Known clinical kill rates, sterilizing effect rates (i.e., log<sub>10</sub> CFU/ml/day)
- Performed MCS in 10,000 Western Cape Patients on the FULL REGIMEN

#### **Further assumptions**

- PK and PK variability from Western Cape, South Africa, patients (studies by Wilkins & McIlleron)
- Resistance to INH and RIF arises as Poisson type event: 100% biofitness
- Patients 100% adherent to INH, RIF and PZA
- Resistance rates constrained to those observed with monotherapy in clinical studies in the 1960s and 1970s
- How many patients on the REGIMEN will be effectively on monotherapy due to PK variability and in what proportion will MDR-TB arise?

#### External validation of model: sputum conversion rates in 10,000 patients



Sputum conversion rate predicted = 56% of patients

Sputum conversion rate from prospective clinical studies in Western Cape= 51-63%

Many (simulated) patients had 1-2 of the 3 drugs at very low concentration throughout, leading to monotherapy of the remaining drug

Drug resistance predicted to arise in <u>0.68% of all pts</u> on therapy in first 2 months despite 100% adherence

# Prospective study of 142 patients in the Western Cape province of South Africa

Jotam Pasipanodya, Helen McIlleron\*, André Burger, Peter A. Wash, Peter Smith, Tawanda Gumbo

Pasipanodya J, et al. Submitted.

## What was done

- All patients hospitalized first 2 months
- •All had 100% adherence first 2 months
- •Drug concentrations measured at 8 time points over 24hrs in month 2
- Followed for 2 years, 6% non-adherence

# Classification and Regression Tree analysis

- Non-parametric machine learning technique
- Main objective is predictive accuracy
- Ranks important predictors of outcome
- Also calculate thresholds for continuous variables
- Clinical factors in the model were age, gender, weight, cavities, HIV status, streptomycin, nonadherence, PK factors (AUC, trough, C<sub>max</sub>)
- Examined both 2 month and 2 year outcomes

# PK/PD in HFS models

| Drug         | Microbial kill | Resistance suppression            | Reference                  |
|--------------|----------------|-----------------------------------|----------------------------|
| Rifampin     | AUC/MIC        | C <sub>max</sub> /MIC             | Gumbo et al. AAC 2007      |
| Isoniazid    | AUC/MIC        | AUC/MIC;<br>C <sub>max</sub> /MIC | Gumbo et al. AAC 2007      |
| Pyrazinamide | AUC/MIC        | %T>MIC                            | Gumbo et al. AAC 2009      |
| Ethambutol   | AUC/MIC        | %T>MIC                            | Srivastava et al. JID 2010 |
| Moxifloxacin | AUC/MIC        | AUC/MIC                           | Gumbo et al. JID 2004      |

#### Top 3 predictors: Long term outcomes



## Long-term outcomes

 91% of patients with poor outcomes had at least one drug with low AUC

All ADR had low concentrations of at least one drug

 Low PZA<sub>AUC</sub> accounted for 83% of <u>all poor</u> long-term outcomes

# Summary

- 2 Month Outcomes (sputum culture conversion)
- Long-term Outcomes (failure, relapse & death)

- PZA C<sub>max</sub>
- RIF C<sub>max</sub>
- INH C<sub>max</sub>

- PZA AUC
- RIF AUC
- INH AUC

# Summary

- Pyrazinamide is likely the dominant drug in current combinations
- PK/PD studies, and patient data, suggest that higher doses may be necessary to achieve optimal AUCs and AUC/MIC associated with efficacy
- Suggest that new drug regimens include a PZA backbone, with optimized dose

#### Drug resistance: Proposal

- •Mtb isolates with different MICs from say 12.5-200 with M. bovis as negative control
- Set up parallel HFS, mouse, Guinea pig studies
- •Treatment with full regimens, see when failure occurs (when it looks like *M. bovis*)
- •That MIC when poor response occurs, is breakpoint

### **FUNDING & Acknowledgements**

- National Institutes of Health:
- DP2 OD001886
- RO1 A1079497
- UT Southwestern:
- Office of Global Health & Leadership
- Department of Medicine \$ Leadership
- UT Southwestern leadership



