PNU-100480 (sutezolid)
Update

RS Wallis, MD, FIDSA
Oct 2011
Pfizer
Sutezolid: Preclinical and Clinical

• Preclinical
 – Superior bactericidal activity vs. LZD regardless of LZD dose
 – Earlier sterilization (1-2) with standard drugs
• Phase 1: SAD, MAD
 – Doses to 600 mg BID reasonably well absorbed and tolerated to 28d
 – No safety signals, incl. hematology
 – Superior bactericidal activity \textit{ex vivo} in whole blood culture (WBA) regardless of LZD dose or concentration
 – Killing linked to T > MIC
• Phase 2: EBA trial (nearly complete)
 – Sutezolid 600 mg BID, 1200 mg QD, HREZ
 – 14 days, Sputum (CFU and TTP) and WBA endpoints
 – Goal is to show activity in lung and assist in dose selection
Innovative development strategy

• Universal regimen
 – No cross-resistance to current TB drugs (excl. FQs, PZA)
 – Effective in DS, M/XDR-TB, HIV-TB

• Parallel studies in DS and M/XDR-TB
 – Larger DS-TB trial to inform M/XDR

• Adaptive licensing based on 2-month sputum culture
 – Also described as accelerated or provisional licensing
 – Initially in M/XDR, HIV-TB, later in DS-TB

• Global TB outcome registry during adaptive licensing
 – Report safety and effectiveness outcomes
Candidates for universal regimen

concentration-activity relationship in whole blood culture

[Graph showing concentration-activity relationship for SQ109, PA-824, Bedaquiline, and Sutezolid]
UJ: additive whole blood culture

A Combined bactericidal activity ($\Delta \log/d$)

<table>
<thead>
<tr>
<th>TMC207 mg/L</th>
<th>0</th>
<th>0.1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.216</td>
<td>-0.442</td>
<td>-0.664</td>
<td>-0.642</td>
</tr>
<tr>
<td>0.5</td>
<td>-0.129</td>
<td>-0.502</td>
<td>-0.884</td>
<td>-0.897</td>
</tr>
<tr>
<td>1.5</td>
<td>-0.327</td>
<td>-0.778</td>
<td>-0.973</td>
<td>-1.133</td>
</tr>
<tr>
<td>3</td>
<td>-0.472</td>
<td>-0.715</td>
<td>-1.036</td>
<td>-1.150</td>
</tr>
</tbody>
</table>

Difference from sum of individual activities

<table>
<thead>
<tr>
<th>TMC207 mg/L</th>
<th>0</th>
<th>0.1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.069</td>
<td>-0.091</td>
<td>-0.125</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>-0.010</td>
<td>0.017</td>
<td>-0.164</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>0.199</td>
<td>0.099</td>
<td>-0.035</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

mean = -0.004±0.116

P = 0.912
Activity of novel combinations

<table>
<thead>
<tr>
<th>Drug combo</th>
<th>Overall effect</th>
<th>Difference from sum</th>
<th>P</th>
<th>Predicted cWBA at standard doses</th>
</tr>
</thead>
<tbody>
<tr>
<td>USq</td>
<td>additive</td>
<td>-0.017</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>UJ</td>
<td>additive</td>
<td>-0.004</td>
<td>0.9</td>
<td>-0.41</td>
</tr>
<tr>
<td>JPa</td>
<td>< additive</td>
<td>0.179</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>UPa</td>
<td>≤ additive</td>
<td>0.628</td>
<td>0.2</td>
<td>-0.34</td>
</tr>
<tr>
<td>UJPa</td>
<td>antagonistic</td>
<td>0.493</td>
<td>0.03</td>
<td>0</td>
</tr>
</tbody>
</table>
Nitroimidazole antagonism: NO?

• In hypoxic, non-replicating cultures, nitroimidazoles-derived NO poisons the respiratory chain, resulting in depletion of ATP
 – Combinations of nitroimidazoles and TMC207 may be less than fully additive if they share a common mechanism of action.
• Whole blood cultures (and likely most in vivo conditions) are neither hypoxic nor fully replicating
• Under non-hypoxic conditions, NO triggers a dormancy response in Mtb through activation of DosR
 – This may reduce the activity of other drugs
• Nitroimidazoles are unlikely to become part of a UJ-containing universal regimen
Adaptive licensing based on 2-mo culture status

![Diagram showing treatment effect over time for DS-TB and M/XDR-TB with new regimen and registry indicated]
Summary

• Early clinical findings support superior efficacy and safety of sutezolid vs. linezolid
• Combinations including sutezolid, bedaquiline, SQ109 appear likely as candidates for a new universal regimen
• Innovative development strategies for sustainable TB drug development can enhance value to patients, physicians, and sponsors, yet address regulatory concerns regarding the approval of medicines that are safe and effective
TB Oxie Team

- **Pfizer**
 - Darcy Paige
 - Mark Mitton-Frye
 - Annette Silvia
 - Jason Gobey
 - Chris Storer
 - Paul Miller
 - Steve Brickner
 - Tom Unger
 - Diane Shoda

- **TB Alliance**
 - Carl Mendel
 - Ann Ginsberg

- **Johns Hopkins**
 - Eric Nuermberger

- **Stellenbosch Univ**
 - Andreas Diacon
 - Sven Friedrich

- **Univ Cape Town**
 - Rod Dawson

- **Veterans CT Healthcare**
 - Wes Jacubiek
 - Sheldon Campbell

- **Tibotec**
 - Koen Andries

- **Sequella**
 - Carol Nacy
 - Gary Horwith
robert.wallis@pfizer.com