

Otsuka TB Drug Development Update

Simba Takuva, MD, MSc. Associate Director, Global Clinical Development.

WGND Annual Meeting, 14 November 2023 Paris, France.

Disclosure

Simba Takuva, MD, MSc.

Otsuka Novel Products GmbH – Munich, Germany,

Otsuka Novel Products GmbH is an affiliate of Otsuka Pharmaceutical Co., Ltd.

Potential COI	Organization			
Employment	Employee of Otsuka			
	Novel Products GmbH,			
	Munich, Germany.			

OPC-167832 is currently in clinical development and not approved in any country.

Otsuka's TB Development Program: Addressing a Major Global Public Health Issue

References:

MDR-TB = multi-drug resistant tuberculosis

EU Summary of Product Characteristics: Delamanid 50mg film-coated tablets/ 25mg dispersible tablets (07/2023).

Hariguchi N, Chen X, Hayashi Y, et al. OPC-167832, a Novel Carbostyril Derivative with Potent Antituberculosis Activity as a DprE1 Inhibitor. Antimicrob Agents Chemother. 2020 May 21;64(6):e02020-19. doi: 10.1128/AAC.02020-19. Print 2020 May 21.

FIGHTBACK

Confidential and Proprietary-do not duplicate or distribute without prior written consent of Otsuka.

Copyright Otsuka Pharmaceutical Co., Ltd [2023]

In vitro antimycobacterial activity of OPC-167832

O function	Minimum inhibitory concentration (µg/mL)						
Strain	OPC-167832	Delamanid	Rifampin	Bedaquiline	Levofloxacin	Moxifloxacin	Linezolid
M. tuberculosis							
ATCC 27294 (H37Rv)	0.0005	0.004	0.25	0.063	0.5	0.5	1
ATCC 35812 (Kurono)	0.0005	0.004	0.25	0.063	0.5	0.13	1
ATCC 35838 (H37Rv RIF-R)	0.0005	0.004	>16	0.063	0.5	0.25	0.5
ATCC 35822 (H37Rv INH-R)	0.00024	0.004	0.5	0.063	0.5	0.25	1
ATCC 35837 (H37Rv EMB-R)	0.002	0.004	0.25	0.063	0.5	0.25	0.5
ATCC 35820 (H37Rv SM-R)	0.001	0.004	0.25	0.063	0.5	0.5	0.5
ATCC 35828 (H37Rv PZA-R)	0.001	0.004	1	0.13	0.5	0.5	1
M. africanum ATCC 25420	0.002	0.001	0.25	0.25	0.25	0.25	0.5
M. bovis ATCC BAA-935	0.002	0.004	0.063	0.13	0.25	0.13	0.5
M. caprae ATCC BAA-824	0.001	0.002	0.13	0.13	0.25	0.063	0.25
M. microti ATCC 11152	0.001	0.002	0.13	0.063	0.25	0.063	0.5
M. pinnipedii ATCC BAA-688	0.0005	0.002	0.5	0.13	0.25	0.25	1

The minimum inhibitory concentrations against *M. tuberculosis* complex standard strains were determined by an agar proportion method (CLSI document M24-A2). The minimum inhibitory concentration was determined as the lowest concentration of a compound inhibiting at least 99% of bacterial growth.

RIF=Rifampin; INH=Isoniazid; EMB=Ethambutol; SM=Streptomycin; PZA=Pyrazinamide; -R=Resistant.

Reference: Hariguchi N, Chen X, Hayashi Y, et al. OPC-167832, a Novel Carbostyril Derivative with Potent Antituberculosis Activity as a DprE1 Inhibitor. Antimicrob Agents Chemother. 2020 May 21;64(6):e02020-19. doi: 10.1128/AAC.02020-19. Print 2020 May 21.

Otsuka

Single and Combination OPC-167832 in Murine Chronic TB Studies

Murine Chronic TB Studies

- Potent anti-mycobacterial activity in an experimental mouse model of chronic TB ICR mice infected with *M. tuberculosis* Kurono strain
- Several regimens combining OPC-167832 plus delamanid as core agents with other anti-TB drugs have the potential to shorten the treatment period.

In vivo combination effect of OPC-167832 (OPC) with delamanid (DLM), bedaquiline (BDQ), or levofloxacin (LVX).

The significant differences between the combined treatment groups and their single-agent treatment groups were also determined by Dunnett's test. *, P < 0.05; **, P < 0.01; NS, not significant.

Mouse model of chronic TB evaluating the relapse rates

- Delamanid + OPC-167832 + Moxifloxacin + Bedaquiline (DOMB) regimen achieved excellent efficacy (0% relapse)
- Relapse rates of the other tested regimens were almost equivalent to those of the standard regimen RHEZ.

	Proportion (%) of Mice With Relapse After Treatment				
Regimen	10 Weeks	12 Weeks	14 Weeks		
None	NT	NT	NT		
Vehicle	NT	NT	NT		
RHZE/RH ^a	12 of 15 (80)	4 of 14 (29)	1 of 14 (7)		
DOMB	0 of 15 (0)	0 of 14 (0)	0 of 5 (0)		

ICR mice infected by MTB Kurono via intratracheal route, started treatment after 2 weeks of the infection. B=bedaquiline (25 mg/kg). O=OPC-167832 (2.5 mg/kg). CFU=colony forming unit. D=delamanid (2.5 mg/kg). E=ethambutol (100 mg/kg). H=isoniazid (25 mg/kg). Lz=linezolid (100 mg/kg). M=moxifloxacin (100 mg/kg). NT=not tested. R=rifampicin (5 mg/kg). Z=pyrazinamide (150 mg/kg). ^aZ and E were administered only for the initial 8 weeks.

Reference: Hariguchi N, Chen X, Hayashi Y, et al. OPC-167832, a Novel Carbostyril Derivative with Potent Antituberculosis Activity as a DprE1 Inhibitor. Antimicrob Agents Chemother. 2020 May 21;64(6):e02020-19. doi: 10.1128/AAC.02020-19. Print 2020 May 21.

Confidential and Proprietary-do not duplicate or distribute without prior written consent of Otsuka. Copyright Otsuka Pharmaceutical Co., Ltd [2023]

OPC-167832 Activity in the Kramnik Mouse Model

Comparison of DprE1 Inhibitor Activity in the Kramnik Mouse Model

- OPC-167832 showed superior efficacy compared to the two other DprE1 inhibitors (TBA-7371, PBTZ169), with the highest kill rate in the first month (4 weeks) of treatment, even at the low doses tested.
- At trough, only OPC-167832 showed adequate drug exposure above the MIC+huSA in the cellular-caseum interface and in caseum of type I lesions, which is where the majority of bacteria are located in C3HeB/FeJ lungs.

References:

Robertson GT, Ramey ME, Massoudi LM, *et al.* Comparative Analysis of Pharmacodynamics in the C3HeB/FeJ Mouse Tuberculosis Model for DprE1 Inhibitors TBA-7371, PBTZ169, and OPC-167832. *Antimicrob Agents Chemother*. 2021 Oct 18;65(11):e0058321. doi: 10.1128/AAC.00583-21. Epub 2021 Aug 9.

O: OPC-167832, D: delamanid, B: bedaquiline, Pa: pretomanid, S: sutezolid, M: moxifloxacin, Z: pyrazinamide,

Confidential and Proprietary-do not duplicate or distribute without prior written consent of Otsuka. Copyright Otsuka Pharmaceutical Co., Ltd [2023]

Trial 323-201-00003: Phase 1b/2a (MAD/EBA) Study

A Phase 1/2, Active-controlled, Randomized, Open-label Trial to Evaluate the Safety, Tolerability, Pharmacokinetics, and Efficacy of Multiple Oral Doses of OPC-167832 Tablets in Subjects with Uncomplicated, Smear-positive, Drug-susceptible Pulmonary Tuberculosis (NCT03678688).

<u>Stage 1</u>: To evaluate the efficacy, PK, safety, and tolerability of multiple ascending oral doses of OPC-167832 (3 mg, 10 mg, 30 mg and 90 mg) compared with RHEZ

- OPC-167832 demonstrated potent bactericidal activity (65.7%-74.7% of RHEZ cohort)*
- QD doses of OPC-167832 in DS-TB subjects had similar PK parameters to healthy adults
- Daily dose of OPC-167832 for 14 days was well tolerated

Stage 2: To evaluate the bactericidal activity and safety of OPC-167832 as part of combination therapy with delamanid (DLM), or bedaquiline (BDQ), or all three compounds compared to RHEZ in participants with drug-susceptible pulmonary tuberculosis

References:

Dawson R, Diacon AH, Narunsky K, *et al.* Phase I Single Ascending Dose and Food Effect Study in Healthy Adults and Phase I/IIa Multiple Ascending Dose Study in Patients with Pulmonary Tuberculosis to Assess Pharmacokinetics, Bactericidal Activity, Tolerability, and Safety of OPC-167832. *Antimicrob Agents Chemother*. 2023;67(6):e0147722. doi: 10.1128/aac.01477-22. Epub 2023 May 23.

Trial 323-201-00006: Phase 2b/c Study

A Multi-center, Phase 2b/c, Randomized, Dose-finding Trial to Evaluate the Safety and Efficacy of a 4-month Regimen of OPC-167832 in Combination with Delamanid (DLM) and Bedaquiline (BDQ) in Participants with Drug-susceptible Pulmonary Tuberculosis in Comparison with Standard Treatment (ClinicalTrials.gov Identifier: NCT05221502)

- To assess the safety and efficacy of OPC-167832 combined with DLM and BDQ in participants with DS-TB administered for 4 months compared to RHEZ administered for 6 months
- Ongoing trial at 7 sites in South Africa
- Randomization stratified by HIV status and presence of bilateral cavitation on screening CXR
- At the end of the treatment period, participants are followed until 12 months post-randomization
- Enrolment is complete (n=122), and all participants have completed the 4- and 6-month treatment
- Interim analysis expected early 2024

Looking into the Future

OPC-167832 as part of TB treatment regimens

- Regimens containing OPC-167832 with new or repurposed anti-TB drugs demonstrated better efficacy than current SoC regimen RHEZ in animal models
- This also included relapse prevention rates where OPC-167832 was a core drug of a regimen, suggesting its potential to contribute to treatment shortening.

Pan-TB Collaboration Trial

 OPC-167832 is included in the two-staged (Phase 2b/c), randomized durationresponse efficacy and safety evaluation of two to four months of treatment with the combination regimens of DBQS and PBQS in adults with pulmonary TB (ClinicalTrials.gov Identifier: NCT05971602).

References:

Hariguchi N, Chen X, Hayashi Y, *et al.* OPC-167832, a Novel Carbostyril Derivative with Potent Antituberculosis Activity as a DprE1 Inhibitor. *Antimicrob Agents Chemother*. 2020 May 21;64(6):e02020-19. doi: 10.1128/AAC.02020-19. Print 2020 May 21.

Otsuka remains committed to TB patients